Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Arch Virol ; 169(1): 7, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082138

RESUMO

Akabane virus (AKAV) is a member of the genus Orthobunyavirus, family Peribunyaviridae. In addition to AKAV strains that cause fetal Akabane disease, which is characterized by abortion in ruminants, some AKAV strains cause postnatal infection characterized by nonsuppurative encephalomyelitis in ruminants. Here, we focused on the NSs protein, a virulence factor for most viruses belonging to the genus Orthobunyavirus, and we hypothesized that this protein would act as a neurovirulence factor in AKAV strains causing postnatal encephalomyelitis. We generated AKAV strains that were unable to produce the NSs protein, derived from two different genogroups, genogroups I and II, and then examined the role of their NSs proteins by inoculating mice intracerebrally with these modified viruses. Our results revealed that the neurovirulence of genogroup II strains is dependent on the NSs protein, whereas that of genogroup I strains is independent of this protein. Notably, infection of primary cultured bovine cells with these viruses suggested that the NSs proteins of both genogroups suppress innate immune-related gene expression with equal efficiency. These results indicate differences in the determinants of virulence of orthobunyaviruses.


Assuntos
Infecções por Bunyaviridae , Encefalomielite , Orthobunyavirus , Gravidez , Feminino , Bovinos , Animais , Camundongos , Infecções por Bunyaviridae/veterinária , Orthobunyavirus/genética , Genótipo , Ruminantes
2.
Vaccine ; 41(33): 4907-4917, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37400284

RESUMO

Live rabies vaccines have advantageous features that can facilitate mass vaccination for dogs, the most important reservoirs/transmitters of rabies. However, some live vaccine strains have problems in their safety, namely, risks from the residual pathogenicity and the pathogenic reversion of live vaccine strains. The reverse genetics system of rabies virus provides a feasible option to improve the safety of a live vaccine strain by, for example, artificially introducing attenuating mutations into multiple viral proteins. It was previously demonstrated in separate studies that introduction of amino acid residues Leu at position 333 in the viral glycoprotein (G333), Ser at G194, and Leu/His at positions 273/394 in the nucleoprotein (N273/394) enhance the safety of a live vaccine strain. In this study, to test our hypothesis that combinational introduction of these residues would significantly increase the safety level of a vaccine strain, we generated a novel live vaccine candidate, ERA-NG2, that is attenuated by mutations at N273/394 and G194/333, and we examined its safety and immunogenicity in mice and dogs. ERA-NG2 did not cause any clinical signs in mice after intracerebral inoculation. After 10 passages in suckling mouse brains, ERA-NG2 retained all of the introduced mutations except the mutation at N394 and the highly attenuated phenotype. These findings indicate that the ERA-NG2 is highly and stably attenuated. After confirming that ERA-NG2 induced a virus-neutralizing antibody (VNA) response and protective immunity in mice, we immunized dogs intramuscularly with a single dose (105-7 focus-forming units) of ERA-NG2 and found that, at all of the tested doses, the strain induced a VNA response in dogs without inducing any clinical signs. These findings demonstrate that ERA-NG2 has a high level of safety and a substantial level of immunogenicity in dogs and thus is a promising live vaccine candidate that can facilitate vaccination in dogs.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Cães , Camundongos , Raiva/prevenção & controle , Raiva/veterinária , Proteínas Virais/genética , Mutação , Vacinas Atenuadas , Anticorpos Antivirais
3.
J Gen Virol ; 103(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36223171

RESUMO

A recent study demonstrated the possibility that migratory birds are responsible for the global spread of avian rotavirus A (RVA). However, little is known about what types of RVAs are retained in migratory birds. In this study, to obtain information on RVA strains in migratory birds, we characterised an RVA strain, Ho374, that was detected in a faecal sample from a gull species (Larus sp.). Genetic analysis revealed that all 11 genes of this strain were classified as new genotypes (G28-P[39]-I21-R14-C14-M13-A24-N14-T16-E21-H16). This clearly indicates that the genetic diversity of avian RVAs is greater than previously recognised. Our findings highlight the need for investigations of RVA strains retained in migratory birds, including gulls.


Assuntos
Charadriiformes , Infecções por Rotavirus , Rotavirus , Animais , Aves , Genoma Viral , Genótipo , Filogenia , Rotavirus/genética , Infecções por Rotavirus/veterinária
4.
J Vet Med Sci ; 84(11): 1508-1513, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36171109

RESUMO

The rabies virus strain Komatsugawa isolated from a dog in Tokyo in the 1940s retains biological properties as a field strain, providing an effective model for studying rabies pathogenesis. To facilitate molecular studies on the pathogenesis, this study aimed to establish a reverse genetics system for the Komatsugawa strain. By transfecting the full-length genome plasmid of this strain, infectious virus with artificially introduced genetic markers in its genome was rescued. The recombinant strain had biological properties similar to those of the original strain. These findings indicate that a reverse genetics system for the Komatsugawa strain has successfully been established.


Assuntos
Doenças do Cão , Vírus da Raiva , Raiva , Cães , Animais , Vírus da Raiva/genética , Genética Reversa/veterinária , Raiva/veterinária , Plasmídeos/genética , Tóquio , Doenças do Cão/genética
5.
J Gen Virol ; 103(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35749287

RESUMO

Avian rotavirus A (RVA) is one of major enteric pathogens that cause diarrhoea in young avian individuals. Importantly, some of the avian RVA strains of G18P[17] genotype are naturally transmitted to and cause clinical diseases in mammalian species, indicating their potential risks to animal health. Although molecular information on the pathogenesis by avian RVA strains will be useful for estimating their risks, the absence of a reverse genetics (RG) system for these strains has hindered the elucidation of their pathogenic mechanisms. In this study, we aimed to establish an RG system for the avian G18P[17] prototype strain PO-13, which was isolated from a pigeon in Japan in 1983 and was experimentally shown to be pathogenic in suckling mice. Transfection with plasmids expressing 11 genomic RNA segments of the strain resulted in rescue of the infectious virus with an artificially introduced genetic marker on its genome, indicating that an RG system for the PO-13 strain was successfully established. The rescued recombinant strain rPO-13 had biological properties almost identical to those of its wild-type strain (wtPO-13). Notably, both rPO-13 and wtPO-13 induced diarrhoea in suckling mice with similar efficiencies. It was thus demonstrated that the RG system will be useful for elucidating the pathogenic mechanisms of the PO-13 strain at the molecular level. This is the first report of the establishment of an RG system for an avian RVA strain.


Assuntos
Infecções por Rotavirus , Rotavirus , Animais , Columbidae , Diarreia/veterinária , Genoma Viral , Genótipo , Mamíferos , Camundongos , Filogenia , Genética Reversa/métodos , Rotavirus/genética , Infecções por Rotavirus/veterinária
6.
Microbiol Immunol ; 66(5): 234-237, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35194811

RESUMO

Tick-borne encephalitis virus (TBEV) is a zoonotic virus that causes encephalitis in humans. Various deletions have been reported in a variable region of the 3' untranslated region of the TBEV genome. This study analyzed the role of a Y-shaped secondary structure in the pathogenicity of TBEV by using reverse genetics. Deletion of the structure increased the mortality rate of virus-infected mice but did not affect the virus multiplication in cultured cells and organs. The results indicate that the secondary structure is involved in the regulation of TBEV pathogenesis.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos , Encefalite Transmitida por Carrapatos , Animais , Vírus da Encefalite Transmitidos por Carrapatos/genética , Encefalite Transmitida por Carrapatos/genética , Encefalite Transmitida por Carrapatos/patologia , Genômica , Camundongos , Conformação de Ácido Nucleico , RNA , Virulência
7.
J Gen Virol ; 103(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35175915

RESUMO

Avian G18P[17] rotaviruses with similar complete genome constellation, including strains that showed pathogenicity in mammals, have been detected worldwide. However, it remains unclear how these strains spread geographically. In this study, to investigate the role of migratory birds in the dispersion of avian rotaviruses, we analysed whole genetic characters of the rotavirus strain RK1 that was isolated from a migratory species of birds [velvet scoter (Melanitta fusca)] in Japan in 1989. Genetic analyses revealed that the genotype constellation of the RK1 strain, G18-P[17]-I4-R4-C4-M4-A21-N4-T4-E4-H4, was highly consistent with those of other G18P[17] strains detected in various parts of the world, supporting the possibility that the G18P[17] strains spread via migratory birds that move over a wide area. Furthermore, the RK1 strain induced diarrhoea in suckling mice after oral gastric inoculation, indicating that at least some of the rotaviruses that originated from migratory birds are infectious to and pathogenic in mammals. In conclusion, it was demonstrated that migratory birds may contribute to the global spread of avian rotaviruses that are pathogenic in mammalian species.


Assuntos
Doenças das Aves/virologia , Genoma Viral , RNA Viral , Infecções por Rotavirus/virologia , Rotavirus/classificação , Animais , Aves
8.
Vaccine ; 39(28): 3777-3784, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34092430

RESUMO

To improve the safety of genetically modified live rabies vaccine strains, most studies have utilized an attenuating Arg-to-Glu mutation at position 333 in the glycoprotein (G333), which is responsible for attenuation of the live vaccine strain SAG2. The Glu residue requires two nucleotide substitutions to revert to pathogenic Arg, thus significantly lowering the probability of pathogenic reversion caused by the Glu-to-Arg mutation at G333. However, only one nucleotide substitution is sufficient to convert the Glu residue to another pathogenic residue, Lys, and thereby to cause pathogenic reversion. This indicates a potential safety problem of SAG2 and the live vaccine candidates attenuated by Glu at G333. In this study, aiming to solve this problem, we examined the utility of a Leu residue, which requires two nucleotide substitutions to be both Arg and Lys, as an attenuating mutation at G333. Using a reverse genetics system of the live vaccine strain ERA, we generated ERA-G333Leu by introducing an Arg-to-Leu mutation at G333. Similar to ERA-G333Glu, which is attenuated by an Arg-to-Glu mutation at G333, ERA-G333Leu did not cause obvious clinical signs in 6-week-old mice after intracerebral inoculation. Importantly, after 10 passages in suckling mouse brains, ERA-G333Glu acquired a pathogenic Lys or Arg at G333 and a high level of lethality in mice, whereas ERA-G333Leu retained the attenuating Leu at G333 and only showed a modest level of virulence probably caused by a mutation at G194. In addition, ERA-G333Leu and ERA-G333Glu induced neutralizing antibody response and protective immunity in mice with similar efficiencies. The results demonstrate that, compared to ERA-G333Glu, ERA-G333Leu is more stably attenuated, also indicating the high utility of a Leu residue as an attenuating mutation at G333 in the development of live rabies vaccine strains with a high level of safety.


Assuntos
Vacina Antirrábica , Vírus da Raiva , Raiva , Animais , Glicoproteínas/genética , Camundongos , Raiva/prevenção & controle , Vacina Antirrábica/genética , Vacinas Atenuadas/genética
9.
Int J Mol Sci ; 21(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053895

RESUMO

Efforts to determine the mosquito genes that affect dengue virus replication have identified a number of candidates that positively or negatively modify amplification in the invertebrate host. We used deep sequencing to compare the differential transcript abundances in Aedes aegypti 14 days post dengue infection to those of uninfected A. aegypti. The gene lethal(2)-essential-for-life [l(2)efl], which encodes a member of the heat shock 20 protein (HSP20) family, was upregulated following dengue virus type 2 (DENV-2) infection in vivo. The transcripts of this gene did not exhibit differential accumulation in mosquitoes exposed to insecticides or pollutants. The induction and overexpression of l(2)efl gene products using poly(I:C) resulted in decreased DENV-2 replication in the cell line. In contrast, the RNAi-mediated suppression of l(2)efl gene products resulted in enhanced DENV-2 replication, but this enhancement occurred only if multiple l(2)efl genes were suppressed. l(2)efl homologs induce the phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the fruit fly Drosophila melanogaster, and we confirmed this finding in the cell line. However, the mechanism by which l(2)efl phosphorylates eIF2α remains unclear. We conclude that l(2)efl encodes a potential anti-dengue protein in the vector mosquito.


Assuntos
Aedes/genética , Aedes/virologia , Vírus da Dengue/fisiologia , Dengue/virologia , Proteínas de Choque Térmico HSP20/genética , Proteínas de Insetos/genética , Mosquitos Vetores/genética , Mosquitos Vetores/virologia , Animais , Biologia Computacional/métodos , Perfilação da Expressão Gênica , Interações Hospedeiro-Patógeno , Transcriptoma , Replicação Viral
10.
Viruses ; 12(9)2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32825306

RESUMO

The rabies virus strain Komatsugawa (Koma), which was isolated from a dog in Tokyo in the 1940s before eradication of rabies in Japan in 1957, is known as the only existent Japanese field strain (street strain). Although this strain potentially provides a useful model to study rabies pathogenesis, little is known about its genetic and phenotypic properties. Notably, this strain underwent serial passages in rodents after isolation, indicating the possibility that it may have lost biological characteristics as a street strain. In this study, to evaluate the utility of the Koma strain for studying rabies pathogenesis, we examined the genetic properties and in vitro and in vivo phenotypes. Genome-wide genetic analyses showed that, consistent with previous findings from partial sequence analyses, the Koma strain is closely related to a Russian street strain within the Arctic-related phylogenetic clade. Phenotypic examinations in vitro revealed that the Koma strain and the representative street strains are less neurotropic than the laboratory strains. Examination by using a mouse model demonstrated that the Koma strain and the street strains are more neuroinvasive than the laboratory strains. These findings indicate that the Koma strain retains phenotypes similar to those of street strains, and is therefore useful for studying rabies pathogenesis.


Assuntos
Doenças do Cão/virologia , Vírus da Raiva/genética , Raiva/veterinária , Animais , Cães , Genoma Viral , Masculino , Camundongos , Fenótipo , Filogenia , Raiva/virologia , Vírus da Raiva/classificação , Vírus da Raiva/isolamento & purificação , Tóquio , Proteínas Virais/genética
11.
J Gen Virol ; 101(5): 497-509, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32134377

RESUMO

Tick-borne encephalitis virus (TBEV) is a zoonotic virus in the genus Flavivirus, family Flaviviridae. TBEV is widely distributed in northern regions of the Eurasian continent, including Japan, and causes severe encephalitis in humans. Tick-borne encephalitis (TBE) was recently reported in central Hokkaido, and wild animals with anti-TBEV antibodies were detected over a wide area of Hokkaido, although TBEV was only isolated in southern Hokkaido. In this study, we conducted a survey of ticks to isolate TBEV in central Hokkaido. One strain, designated Sapporo-17-Io1, was isolated from ticks (Ixodes ovatus) collected in Sapporo city. Sequence analysis revealed that the isolated strain belonged to the Far Eastern subtype of TBEV and was classified in a different subcluster from Oshima 5-10, which had previously been isolated in southern Hokkaido. Sapporo-17-Io1 showed similar growth properties to those of Oshima 5-10 in cultured cells and mouse brains. The mortality rate of mice infected intracerebrally with each virus was similar, but the survival time of mice inoculated with Sapporo-17-Io1 was significantly longer than that of mice inoculated with Oshima 5-10. These results indicate that the neurovirulence of Sapporo-17-Io1 was lower than that of Oshima 5-10. Using an infectious cDNA clone, the replacement of genes encoding non-structural genes from Oshima 5-10 with those from Sapporo-17-Io1 attenuated the neuropathogenicity of the cloned viruses. This result indicated that the non-structural proteins determine the neurovirulence of these two strains. Our results provide important insights for evaluating epidemiological risk in TBE-endemic areas of Hokkaido.


Assuntos
Vírus da Encefalite Transmitidos por Carrapatos/isolamento & purificação , Encefalite Transmitida por Carrapatos/virologia , Ixodes/virologia , Animais , Animais Selvagens/virologia , Encéfalo/virologia , Linhagem Celular , Vírus da Encefalite Transmitidos por Carrapatos/genética , Feminino , Japão , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Proteínas não Estruturais Virais/genética , Virulência/genética
12.
PLoS One ; 12(12): e0189250, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29267298

RESUMO

Rift Valley fever phlebovirus (RVFV) causes high rates of abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral transmission occurs via mosquito vectors in endemic areas, which necessitates regular vaccination of susceptible livestock animals to prevent the RVF outbreaks. Although ZH501 strain has been used as a challenge strain for past vaccine efficacy studies, further characterization of other RVFV strains is important to optimize ruminant and nonhuman primate RVFV challenge models. This study aimed to characterize the virulence of wild-type RVFV strains belonging to different genetic lineages in outbred CD1 mice. Mice were intraperitoneally infected with 1x103 PFU of wild-type ZH501, Kenya 9800523, Kenya 90058, Saudi Arabia 200010911, OS1, OS7, SA75, Entebbe, or SA51 strains. Among them, mice infected with SA51, Entebbe, or OS7 strain showed rapid dissemination of virus in livers and peracute necrotic hepatitis at 2-3 dpi. Recombinant SA51 (rSA51) and Zinga (rZinga) strains were recovered by reverse genetics, and their virulence was also tested in CD1 mice. The rSA51 strain reproduced peracute RVF disease in mice, whereas the rZinga strain showed a similar virulence with that of rZH501 strain. This study showed that RVFV strains in different genetic lineages display distinct virulence in outbred mice. Importantly, since wild-type RVFV strains contain defective-interfering RNA or various genetic subpopulations during passage from original viral isolations, recombinant RVFV strains generated by reverse genetics will be better suitable for reproducible challenge studies for vaccine development as well as pathological studies.


Assuntos
Modelos Animais de Doenças , Vírus da Febre do Vale do Rift/patogenicidade , Virulência/genética , Animais , Linhagem Celular , Relação Dose-Resposta Imunológica , Feminino , Fígado/patologia , Camundongos , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/imunologia , Inoculações Seriadas , Baço/patologia , Vacinas Virais/imunologia
13.
Vaccine ; 35(48 Pt B): 6634-6642, 2017 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-29061350

RESUMO

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Arabian Peninsula that affects sheep, cattle, goats, camels, and humans. Effective vaccination of susceptible ruminants is important for the prevention of RVF outbreaks. Live-attenuated RVF vaccines are in general highly immunogenic in ruminants, whereas residual virulence might be a concern for vulnerable populations. It is also important for live-attenuated strains to encode unique genetic markers for the differentiation from wild-type RVFV strains. In this study, we aimed to strengthen the attenuation profile of the MP-12 vaccine strain via the introduction of 584 silent mutations. To minimize the impact on protective efficacy, codon usage and codon pair bias were not de-optimized. The resulting rMP12-GM50 strain showed 100% protective efficacy with a single intramuscular dose, raising a 1:853 mean titer of plaque reduction neutralization test. Moreover, outbred mice infected with one of three pathogenic reassortant ZH501 strains, which encoded rMP12-GM50 L-, M-, or S-segments, showed 90%, 50%, or 30% survival, respectively. These results indicate that attenuation of the rMP12-GM50 strain is significantly attenuated via the L-, M-, and S-segments. Recombinant RVFV vaccine strains encoding similar silent mutations will be also useful for the surveillance of reassortant strains derived from vaccine strains in endemic countries.


Assuntos
Febre do Vale de Rift/prevenção & controle , Vírus da Febre do Vale do Rift/genética , Vacinas Atenuadas/imunologia , Vacinas Sintéticas/imunologia , Vacinas Virais/imunologia , África/epidemiologia , Animais , Chlorocebus aethiops , Surtos de Doenças/prevenção & controle , Camundongos , Mutação , Testes de Neutralização , Genética Reversa/métodos , Febre do Vale de Rift/epidemiologia , Febre do Vale de Rift/imunologia , Febre do Vale de Rift/virologia , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Células Vero , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética , Virulência
14.
PLoS One ; 12(9): e0185194, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28926632

RESUMO

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to Africa and the Arabian Peninsula. The causative agent, Rift Valley fever phlebovirus (RVFV), belongs to the genus Phlebovirus in the family Phenuiviridae and causes high rates of abortions in ruminants, and hemorrhagic fever, encephalitis, or blindness in humans. Viral maintenance by mosquito vectors has led to sporadic RVF outbreaks in ruminants and humans in endemic countries, and effective vaccination of animals and humans may minimize the impact of this disease. A live-attenuated MP-12 vaccine strain is one of the best characterized RVFV strains, and was conditionally approved as a veterinary vaccine in the U.S. Live-attenuated RVF vaccines including MP-12 strain may form reassortant strains with other bunyavirus species. This study thus aimed to characterize the occurrence of genetic reassortment between the MP-12 strain and bunyavirus species closely related to RVFV. The Arumowot virus (AMTV) and Gouleako goukovirus (GOLV), are transmitted by mosquitoes in Africa. The results of this study showed that GOLV does not form detectable reassortant strains with the MP-12 strain in co-infected C6/36 cells. The AMTV also did not form any reassortant strains with MP-12 strain in co-infected C6/36 cells, due to the incompatibility among N, L, and Gn/Gc proteins. A lack of reassortant formation could be due to a functional incompatibility of N and L proteins derived from heterologous species, and due to a lack of packaging via heterologous Gn/Gc proteins. The MP-12 strain did, however, randomly exchange L-, M-, and S-segments with a genetic variant strain, rMP12-GM50, in culture cells. The MP-12 strain is thus unlikely to form any reassortant strains with AMTV or GOLV in nature.


Assuntos
Phlebovirus/fisiologia , Vírus da Febre do Vale do Rift/fisiologia , Animais , Sequência de Bases , Chlorocebus aethiops , Genótipo , Humanos , Phlebovirus/genética , RNA Viral/genética , RNA Viral/metabolismo , Vírus Reordenados/genética , Vírus Reordenados/fisiologia , Febre do Vale de Rift/prevenção & controle , Febre do Vale de Rift/virologia , Vírus da Febre do Vale do Rift/genética , Células Vero , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/metabolismo , Replicação Viral
15.
Virulence ; 7(8): 871-881, 2016 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-27248570

RESUMO

Rift Valley fever is a mosquito-borne zoonotic disease affecting ruminants and humans. Rift Valley fever virus (RVFV: family Bunyaviridae, genus Phlebovirus) causes abortions and fetal malformations in ruminants, and hemorrhagic fever, encephalitis, or retinitis in humans. The live-attenuated MP-12 vaccine is conditionally licensed for veterinary use in the US. However, this vaccine lacks a marker for the differentiation of vaccinated from infected animals (DIVA). NSs gene is dispensable for RVFV replication, and thus, rMP-12 strains lacking NSs gene is applicable to monitor vaccinated animals. However, the immunogenicity of MP-12 lacking NSs was not as high as parental MP-12. Thus, chimeric MP-12 strains encoding NSs from either Toscana virus (TOSV), sandfly fever Sicilian virus (SFSV) or Punta Toro virus Adames strain (PTA) were characterized previously. Although chimeric MP-12 strains are highly immunogenic, the attenuation through the S-segment remains unknown. Using pathogenic ZH501 strain, we aimed to demonstrate the attenuation of ZH501 strain through chimeric S-segment encoding either the NSs of TOSV, SFSV, PTA, or Punta Toro virus Balliet strain (PTB). In addition, we characterized rZH501 encoding a human dominant-negative PKR (PKRΔE7), which also enhances the immunogenicity of MP-12. Study done on mice revealed that attenuation of rZH501 occurred through the S-segment encoding either PKRΔE7 or SFSV NSs. However, rZH501 encoding either TOSV, PTA, or PTB NSs in the S-segment uniformly caused lethal encephalitis. Our results indicated that the S-segments encoding PKRΔE7 or SFSV NSs are attenuated and thus applicable toward next generation MP-12 vaccine candidates that encode a DIVA marker.


Assuntos
Vírus da Febre do Vale do Rift/imunologia , Vírus da Febre do Vale do Rift/patogenicidade , Proteínas não Estruturais Virais/genética , Proteínas não Estruturais Virais/imunologia , Vacinas Virais/imunologia , Animais , Linhagem Celular , Chlorocebus aethiops , Humanos , Imunogenicidade da Vacina , Camundongos , Proteínas Recombinantes de Fusão/imunologia , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Flebótomo Napolitano/genética , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia , Células Vero , Vacinas Virais/genética
16.
Viruses ; 8(5)2016 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-27223297

RESUMO

Rift Valley fever is a mosquito-transmitted, zoonotic disease that infects humans and ruminants. Dendritic cell specific intercellular adhesion molecule 3 (ICAM-3) grabbing non-integrin (DC-SIGN) acts as a receptor for members of the phlebovirus genus. The Rift Valley fever virus (RVFV) glycoproteins (Gn/Gc) encode five putative N-glycan sequons (asparagine (N)-any amino acid (X)-serine (S)/threonine (T)) at positions: N438 (Gn), and N794, N829, N1035, and N1077 (Gc). The N-glycosylation profile and significance in viral infection via DC-SIGN have not been elucidated. Gc N-glycosylation was first evaluated by using Gc asparagine (N) to glutamine (Q) mutants. Subsequently, we generated a series of recombinant RVFV MP-12 strain mutants, which encode N-to-Q mutations, and the infectivity of each mutant in Jurkat cells stably expressing DC-SIGN was evaluated. Results showed that Gc N794, N1035, and N1077 were N-glycosylated but N829 was not. Gc N1077 was heterogeneously N-glycosylated. RVFV Gc made two distinct N-glycoforms: "Gc-large" and "Gc-small", and N1077 was responsible for "Gc-large" band. RVFV showed increased infection of cells expressing DC-SIGN compared to cells lacking DC-SIGN. Infection via DC-SIGN was increased in the presence of either Gn N438 or Gc N1077. Our study showed that N-glycans on the Gc and Gn surface glycoproteins redundantly support RVFV infection via DC-SIGN.


Assuntos
Moléculas de Adesão Celular/metabolismo , Glicoproteínas/metabolismo , Lectinas Tipo C/metabolismo , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores Virais/metabolismo , Vírus da Febre do Vale do Rift/fisiologia , Proteínas Estruturais Virais/metabolismo , Ligação Viral , Substituição de Aminoácidos , Glicoproteínas/genética , Humanos , Células Jurkat , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Vírus da Febre do Vale do Rift/genética , Proteínas Estruturais Virais/genética
17.
Viruses ; 8(6)2016 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-27231931

RESUMO

The Rift Valley fever virus (RVFV) M-segment encodes the 78 kD, NSm, Gn, and Gc proteins. The 1st AUG generates the 78 kD-Gc precursor, the 2nd AUG generates the NSm-Gn-Gc precursor, and the 3rd AUG makes the NSm'-Gn-Gc precursor. To understand biological changes due to abolishment of the precursors, we quantitatively measured Gn secretion using a reporter assay, in which a Gaussia luciferase (gLuc) protein is fused to the RVFV M-segment pre-Gn region. Using the reporter assay, the relative expression of Gn/gLuc fusion proteins was analyzed among various AUG mutants. The reporter assay showed efficient secretion of Gn/gLuc protein from the precursor made from the 2nd AUG, while the removal of the untranslated region upstream of the 2nd AUG (AUG2-M) increased the secretion of the Gn/gLuc protein. Subsequently, recombinant MP-12 strains encoding mutations in the pre-Gn region were rescued, and virological phenotypes were characterized. Recombinant MP-12 encoding the AUG2-M mutation replicated slightly less efficiently than the control, indicating that viral replication is further influenced by the biological processes occurring after Gn expression, rather than the Gn abundance. This study showed that, not only the abolishment of AUG, but also the truncation of viral UTR, affects the expression of Gn protein by the RVFV M-segment.


Assuntos
Análise Mutacional de DNA , Perfilação da Expressão Gênica , Glicoproteínas/metabolismo , Precursores de Proteínas/metabolismo , Vírus da Febre do Vale do Rift/genética , Proteínas Virais/metabolismo , Animais , Linhagem Celular , Códon de Iniciação , Genes Reporter , Glicoproteínas/genética , Humanos , Luciferases/análise , Luciferases/genética , Precursores de Proteínas/genética , Proteínas Recombinantes de Fusão , Vírus da Febre do Vale do Rift/fisiologia , Proteínas Virais/genética , Replicação Viral
18.
J Virol ; 90(7): 3735-44, 2016 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-26819307

RESUMO

UNLABELLED: Rift Valley fever (RVF) is endemic to Africa, and the mosquito-borne disease is characterized by "abortion storms" in ruminants and by hemorrhagic fever, encephalitis, and blindness in humans. Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus) has a tripartite negative-stranded RNA genome (L, M, and S segments). A live-attenuated vaccine for RVF, the MP-12 vaccine, is conditionally licensed for veterinary use in the United States. MP-12 is fully attenuated by the combination of the partially attenuated L, M, and S segments. Temperature sensitivity (ts) limits viral replication at a restrictive temperature and may be involved with viral attenuation. In this study, we aimed to characterize the ts mutations for MP-12. The MP-12 vaccine showed restricted replication at 38°C and replication shutoff (100-fold or greater reduction in virus titer compared to that at 37°C) at 39°C in Vero and MRC-5 cells. Using rZH501 reassortants with either the MP-12 L, M, or S segment, we found that all three segments encode a temperature-sensitive phenotype. However, the ts phenotype of the S segment was weaker than that of the M or L segment. We identified Gn-Y259H, Gc-R1182G, L-V172A, and L-M1244I as major ts mutations for MP-12. The ts mutations in the L segment decreased viral RNA synthesis, while those in the M segment delayed progeny production from infected cells. We also found that a lack of NSs and/or 78kD/NSm protein expression minimally affected the ts phenotype. Our study revealed that MP-12 is a unique vaccine carrying ts mutations in the L, M, and S segments. IMPORTANCE: Rift Valley fever (RVF) is a mosquito-borne viral disease endemic to Africa, characterized by high rates of abortion in ruminants and severe diseases in humans. Vaccination is important to prevent the spread of disease, and a live-attenuated MP-12 vaccine is currently the only vaccine with a conditional license in the United States. This study determined the temperature sensitivity (ts) of MP-12 vaccine to understand virologic characteristics. Our study revealed that MP-12 vaccine contains ts mutations independently in the L, M, and S segments and that MP-12 displays a restrictive replication at 38°C.


Assuntos
Vírus da Febre do Vale do Rift/fisiologia , Vírus da Febre do Vale do Rift/efeitos da radiação , Vacinas Virais/genética , Replicação Viral/efeitos da radiação , Animais , Linhagem Celular , Análise Mutacional de DNA , Humanos , Mutação de Sentido Incorreto , Vírus da Febre do Vale do Rift/genética , Temperatura , Vacinas Atenuadas/genética
19.
Front Microbiol ; 6: 787, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26322023

RESUMO

Rift Valley fever (RVF) is a mosquito-borne zoonotic disease endemic to the African continent. RVF is characterized by high rate of abortions in ruminants and hemorrhagic fever, encephalitis, or blindness in humans. RVF is caused by the Rift Valley fever virus (RVFV: genus Phlebovirus, family Bunyaviridae). Vaccination is the only known effective strategy to prevent the disease, but there are no licensed RVF vaccines available for humans. A live-attenuated vaccine candidate derived from the wild-type pathogenic Egyptian ZH548 strain, MP-12, has been conditionally licensed for veterinary use in the U.S. MP-12 displays a temperature-sensitive (ts) phenotype and does not replicate at 41°C. The ts mutation limits viral replication at a specific body temperature and may lead to an attenuation of the virus. Here we will review well-characterized ts mutations for RNA viruses, and further discuss the potential in designing novel live-attenuated vaccines for RVF.

20.
Front Microbiol ; 6: 651, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26175722

RESUMO

Rift Valley fever virus (RVFV; Bunyaviridae, Phlebovirus) causes a range of illnesses that include retinitis, fulminant hepatitis, neurologic disease, and hemorrhagic fever. In hospitalized individuals, case fatality rates can be as high as 10-20%. There are no vaccines or antivirals approved for human use to prevent or treat severe RVFV infections. We previously tested the efficacy of the MP-12 vaccine strain and related variants with NSs truncations as a post-exposure prophylaxis in mice infected with wild-type pathogenic RVFV strain ZH501. Post-exposure efficacy of the rMP12-C13type, a recombinant MP-12 vaccine virus which encodes an in-frame truncation removing 69% of the NSs protein, resulted in 30% survival when administering the virus within 30 min of subcutaneous ZH501 challenge in mice, while the parental MP-12 virus conferred no protection by post-exposure vaccination. Here, we demonstrate uniform protection of hamsters by post-exposure vaccination with rMP12-C13type administered 6 h post-ZH501 infection while no efficacy was observed with the parental MP-12 virus. Notably, both the MP-12 and rMP12-C13type viruses were highly effective (100% protection) when administered 21 days prior to challenge. In a subsequent study delaying vaccination until 8, 12, and 24 h post-RVFV exposure, we observed 80, 70, and 30% survival, respectively. Our findings indicate that the rapid protective innate immune response elicited by rMP12-C13type may be due to the truncated NSs protein, suggesting that the resulting functional inactivation of NSs plays an important role in the observed post-exposure efficacy. Taken together, the data demonstrate that post-exposure vaccination with rMP12-C13type is effective in limiting ZH501 replication and associated disease in standard pre-exposure vaccination and post-challenge treatment models of RVFV infection, and suggest an extended post-exposure prophylaxis window beyond that initially observed in mice.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA